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Abstract
JavaScript is the programming language most commonly used
for client-side scripting in the world wide web and has been
gaining popularity for other types of applications via Node.js.
The complexity of the JavaScript semantics makes it a hard
target for static analyses. Thus, a new intermediate untyped
language named ECMA-SL was developed to assist with
the analysis and specification of JavaScript programs. In this
thesis, we introduce Typed ECMA-SL, a typed version of
ECMA-SL, together with a flow-sensitive type system for
the language. We further define a big-step and a small-step
operational semantics for Typed ECMA-SL and prove the
soundness of the proposed type system with respect to both
semantics.

1 Introduction
JavaScript is the programming language most commonly used
for client-side scripting in the world wide web [4] and has
been gaining increasingly popularity for other types of ap-
plications via Node.js [6], a run-time environment for de-
veloping stand-alone JavaScript applications built on top
of the V8 JavaScript engine [5]. In order to guarantee that
JavaScript programs behave consistently throughout all exist-
ing browsers, the Ecma International association develops and
maintains the JavaScript standard, a long complex document
written in English, about one thousand pages long, describing
both the syntax and semantics of the JavaScript language. The
complexity of the JavaScript semantics makes it a hard target
for static analyses, which, in order to be sound, have to reason
about all the corner cases described in the official standard.

The standard way to deal with the complexity of real world
programming languages when designing new program anal-
yses is to first compile the given program to a simpler in-
termediate language and then apply the analysis at the in-
termediate language level. Following this approach, a re-
search team at INESC-ID developed ECMA-SL, a new inter-
mediate language for JavaScript analysis and specification.
The ECMA-SL project [27] comes with a compiler from
JavaScript to ECMA-SL, thereby allowing new static analy-
ses for JavaScript to target ECMA-SL instead of JavaScript
directly. ECMA-SL is a simple untyped imperative language
with extensible objects and standard control flow constructs.
In contrast to the semantics of JavaScript which is about

1000 pages long, the semantics of ECMA-SL can be formally
described in one page, making it a suitable target for static
analysis.

Currently the ECMA-SL project supports ECMAScript 5,
the 5th version [2] of the JavaScript standard, which is now in
its 12th version [1] (ECMAScript 12). The ECMA-SL project
has at its core an ECMAScript 5 interpreter written in ECMA-
SL called ECMARef5 [23], which consists of more than 10K
lines of ECMA-SL code. In order to adapt the ECMA-SL
project to the more recent versions of the ECMAScript stan-
dard, one has to adapt and extend the ECMARef5 interpreter.
This is by no means an easy task as the size and complexity
of the standard grew substantially since its 5th version. Fur-
thermore, the fact that ECMA-SL is untyped makes any sort
of refactoring of the existing code base extremely error prone
and time consuming. For this reason, the aim of this project
is to streamline the management and maintenance of the EC-
MARef interpreter by adding a type system to ECMA-SL.

A type system is a syntactic method for checking the ab-
sence of certain classes of errors in programs by classifying
the given program’s statements and expressions according to
the kinds of values that it computes. Typically, a type system
is defined as a set of rules, with each rule applying to a specific
phrase of the language. These rules target type errors such
as an operand or argument passed to a function being incom-
patible with the type expected by that operator or function.
Ideally, type systems are supposed to be sound: if a sound
type system accepts a program, then there are no inputs for
which the execution of that program throws a runtime error.
In order to guarantee soundness, type systems have to be con-
servative, meaning that they have to reject not only incorrect
programs but also correct programs that cannot be proven
so. We say that a type system is more precise than another if
the former rejects fewer correct programs than the latter. In
practice, there is a trade-off between precision and complex-
ity of type annotations. The more precise a type system is,
the more complex and unwieldy are its corresponding type
annotations. Hence, in general, more precise type systems are
more difficult to use. In order to avoid this trade-off, some
type systems are purposely designed to be unsound with the
goal of rejecting as few correct programs as possible whilst
not having an overly complex notational burden.
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Much like JavaScript, ECMA-SL is a highly dynamic pro-
gramming language, including features such as extensible
objects and dynamic binding of function calls, which make
it a hard target for standard type systems. In particular, the
combination of aliasing with object mutability is difficult to
control if one wants to keep the type system both sound and
precise. The goal of this thesis is to formalise a typed version
of ECMA-SL, named Typed ECMA-SL, together with a type
system with the two following characteristics:

• Soundness: well-typed programs cannot go wrong;
• Flow-Sensitivity: program variables and objects are

allowed to change their types during execution.

Flow-sensitivity is key for precision, allowing us to keep our
type system as little restrictive as possible. The key idea of our
type system is to explicitly track object aliasing and constrain
object mutation. In particular, objects are only allowed to be
mutated if there is a single pointer to them.

With the gaining popularity of JavaScript, many indus-
trial and academic research groups have developed type sys-
tems for different fragments of the language [8, 10, 29].
As ECMA-SL and JavaScript have many common features,
one would expect that one of the proposed type systems for
JavaScript could be applied to ECMA-SL. This is, however,
not the case as none of these systems meets our require-
ments; some of them are explicitly unsound [8], some are
flow-insensitive [29], and others are overly complex due to
features of JavaScript that are not included in ECMA-SL [10]
such as prototype inheritance.

We consider this thesis to have three contributions: first,
the formalisation of the Typed ECMA-SL language; second,
the development of a type system based on a novel idea -
open/closed types for tracking aliasing; finally, two sound-
ness proofs written with respect to two different operational
semantics. Below, we briefly describe each of these contribu-
tions.

Typed ECMA-SL The first contribution of this work is the
definition of Typed ECMA-SL, a typed version of ECMA-
SL. In order to facilitate the transition for developers, Typed
ECMA-SL was designed to be as similar to ECMA-SL as
possible, thus minimizing the number of extra annotations
required.

Type System The developed type system is the central con-
tribution of this thesis as it not only provides a set of rules
for supporting the development of correct programs, but also
presents a novel idea which can be adapted to other object-
oriented scripting languages: open/closed objects. This idea,
which is at the core of our type system, is key for allowing it
to be flow-sensitive, while keeping it sound.

Soundness Proofs We provide two soundness proofs for our
type system. In order to do this we introduce two different
semantics: a big-step semantics [22] and a small-step seman-
tics [26]. By proving the soundness of our type system we
ensure that well-typed programs cannot go wrong, which was
one of our type system’s requirements. We chose to provide

two different proofs to explore different trade-offs between
clarity and expressivity.

2 Typed ECMA-SL
ECMA-SL is a simple imperative language with extensible
objects developped to assist with JavaScript analysis and
specification. The ECMA-SL language was used to develop
ECMARef, a new JavaScript refernece interpreter that follows
the ECMAScript standard [2], the official JavaScript standard,
faithfully. The ECMA-SL project has been developed by a
research team at INESC-ID and has been throughly tested
against Test262 [3], the official ECMAScript conformance
suite.

So far, ECMA-SL is an untyped language and, therefore,
it has two major disadvantages when compared to typed lan-
guages. Firstly, a typed language allows for the static detec-
tion of code errors. Secondly, programs written in untyped
languages are harder to maintain than typed languages, which
promote a design-by-contract approach to the software de-
velopment process, with function signatures acting as a clear
interface between the code of the corresponding functions and
the programs that use them. This project contributes to the
overall ECMA-SL project by designing a new typed version
of ECMA-SL, which mitigates these two defects.

In this chapter, we introduce our typed version of ECMA-
SL, called Typed ECMA-SL, together with its type system.

2.1 Syntax
A Typed ECMA-SL program 𝑝 ∈ 𝑃𝑟𝑜𝑔𝑠 is a collection of
Typed ECMA-SL functions. A Typed ECMA-SL function
𝑓 𝑢𝑛𝑐 ∈ 𝐹𝑢𝑛𝑐𝑠 is of the form 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 (𝑥1 : 𝜏1, ..., 𝑥𝑛 :
𝜏𝑛){𝑠}, where 𝑓 is the identifier, 𝑥1, ..., 𝑥𝑛 are the function
formal parameters with types 𝜏1, ..., 𝜏𝑛, and 𝑠 is the body of
the function. The syntax of Typed ECMA-SL is given in
Figure 1, mostly coinciding with that of untyped ECMA-SL.

Typed vs Untyped ECMA-SL The main differences between
Typed ECMA-SL and ECMA-SL are the following:

1. Function parameters must be annotated with their cor-
responding types.

2. The syntax is extended with a special statement commit
to provide information to the type system.

3. We restrict field look-ups, deletions, and assignments
to require the name of the field to appear statically. For
instance, we do not support the syntax o[x], where x is
a program variable that denotes the name of the field
being inspected; instead, we only have the syntax o.p,
where p is exactly the name of the field being inspected.

4. Functions calls are fully static; that is, the identifier of
the function to be called must be known at static time.
In contrast, in untyped ECMA-SL, that identifier can
be computed dynamically.

Types Typed ECMA-SL includes three main categories of
types: primitive types, function types, and object types. Prim-
itive types comprise the string type, the number type, the
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Expressions Statements Types
𝑒 ∈ E ::= 𝑥 𝑠 ∈ S ::= 𝑥 := 𝑒 𝜏 ∈ 𝑇 ::= 𝑛𝑢𝑚𝑏𝑒𝑟

| 𝑣 | 𝑥 .𝑓 := 𝑒 | 𝑠𝑡𝑟
| ⊕(𝑒) | 𝑥 := 𝑔.𝑓 | 𝑛𝑢𝑙𝑙
| ⊗(𝑒1, 𝑒2) | 𝑥 := {} | 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑

| commit(𝑥) | {𝑝𝑖𝜏𝑖 |𝑛𝑖=1}◦
⊗ ∈ {+, 𝑥,−, ...} | delete(𝑥 .𝑓 ) | {𝑝𝑖𝜏𝑖 |𝑛𝑖=1}•

| skip | (𝜏1, ..., 𝜏𝑛) → 𝜏

𝑣 ∈ V ::= 𝑡𝑟𝑢𝑒 | 𝑠1; 𝑠2
| 𝑓 𝑎𝑙𝑠𝑒 | if (𝑒){𝑠1} else {𝑠2}
| 𝑛 ∈ N | while(𝑒){𝑠}
| 𝑠𝑡𝑟𝑖𝑛𝑔 | 𝑥 := 𝑓 (𝑒1, ..., 𝑒𝑛)

| return(𝑒)

Figure 1. Typed ECMA-SL Syntax

boolean type, and the special undefined and null types. Func-
tion types have their standard interpretation:

The type (𝜏1, ..., 𝜏𝑛) → 𝜏 is the type of the functions that
take arguments of types 𝜏1, ..., 𝜏𝑛 and produce a result of
type 𝜏 . Object types are more complicated. The object type
{𝑝𝑖𝜏𝑖 |𝑛𝑖=1}∗ denotes objects that only contain the fields 𝑝1 to
𝑝𝑛, mapping each field 𝑝𝑖 to a value of type 𝜏𝑖 . Given an ob-
ject type 𝜏 = {𝑝𝑖𝜏𝑖 |𝑛𝑖=1}∗, we write 𝑑𝑜𝑚(𝜏) to mean the set of
fields that it contains: {𝑝𝑖 |𝑛𝑖=1} and ⌊𝜏⌋ to refer to its openness
flag, ∗.

We have two classes of object types: open object types,
{𝑝𝑖𝜏𝑖 |𝑛𝑖=1}◦, and closed object types, {𝑝𝑖𝜏𝑖 |𝑛𝑖=1}•. If an object
has an open object type, it is referred to as an open object, and,
if not, a closed object. Only open objects can be extended
or shrank during execution, meaning that we can only add
new fields or delete existing fields to/from open objects. The
domain of a closed object is not allowed to change during
execution and the types of its fields must remain the same.
When an object is created, it is assumed to be open. After
populating an object with all the fields that it should contain,
the programmer must close it using the commit statement.
Closing an object is essential if one intends to assign it to
other variables, as our type system enforces that only closed
objects can be referenced by more than one pointer.

2.2 Type System
Definition 1 (Store Typing Environment). A store typing
environment is a function Γ : 𝑉𝑎𝑟 ↦→ T mapping variables in
𝑉𝑎𝑟 to types in T.

Definition 2 (Global Typing Context). A global typing con-
text is a partial function Δ : 𝐹 ⇀ T mapping function identi-
fiers in the set of all function identifiers 𝐹 to function types in
T.

Typing Rules for Expressions Given a store typing environ-
ment Γ, an expression 𝑒 and a type 𝜏 it is said that Γ types the
expression 𝑒 with type 𝜏 , written Γ ⊢ 𝑒 : 𝜏 as long as there is a
derivation for it according to the rules defined in Figure 2.

VARIABLE
𝜏 = Γ(𝑥)
Γ ⊢ 𝑥 : 𝜏

VALUE
𝑇𝑦𝑝𝑒 (𝑣) = 𝜏

Γ ⊢ 𝑣 : 𝜏

UNARY OPERATION
Γ ⊢ 𝑒 : 𝜏𝑒 ⊕ (𝜏𝑒 ) = 𝜏

Γ ⊢ ⊕(𝑒) : 𝜏

BINARY OPERATION
Γ ⊢ 𝑒1 : 𝜏𝑒1 Γ ⊢ 𝑒2 : 𝜏𝑒2 ⊗ (𝜏𝑒1 , 𝜏𝑒2 ) = 𝜏

Γ ⊢ ⊗(𝑒1, 𝑒2) : 𝜏

Figure 2. Typing Rules for Expressions: Γ ⊢ 𝑒 : 𝜏

Typing Rules for Statements Given a function identifier 𝑔, a
global typing context Δ, two store typing environment Γ1 and
Γ2, and a statement 𝑠, the typing judgement 𝑔,Δ ⊢ {Γ1} 𝑠 {Γ2}
means that 𝑠 occurs within the body of 𝑔 and that under the
global typing context Δ, the execution of 𝑠 on a variable store
satisfying the initial store typing environment Γ1 results in a
variable store satisfying the final variable typing environment
Γ2.

The key insight of our type system is that we have to control
aliasing. In particular, our type system enforces a no aliasing
policy for open objects, which guarantees that open objects
can only be accessed through a single program variable at
a time. To ensure this, we do not allow open objects to be
assigned to program variables and/or object fields. Once an
object is closed, such assignments are allowed. We call this
policy no aliasing for open objects (NAOO) and will discuss
it thoroughly in the subsequent chapters of this thesis. In the
rules, we make use of a predicate Closed(𝜏) to determine
whether or not the given type 𝜏 is closed. Primitive types are
treated as closed object types, meaning that Closed(𝜏) also
holds when 𝜏 is a primitive type.

In Figure 3 we provide some of our typing rules.

Typing functions A function 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 (𝑥1 : 𝜏1, ..., 𝑥𝑛 :
𝜏𝑛){𝑠} is said to be typable under the global typing context Δ,
written Δ ⊢ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 (𝑥1 : 𝜏1, ..., 𝑥𝑛 : 𝜏𝑛){𝑠}, if its body is
typable with respect to the typing environment obtained by
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FIELD ASSIGNMENT - OPEN EXIST

Γ ⊢ 𝑒 : 𝜏𝑒 Γ(𝑥) = {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1}◦
∃𝑗 ∈{1,...,𝑘 } 𝑓 = 𝑓𝑗 Closed(𝜏𝑒 )

𝑔,Δ ⊢ {Γ} 𝑥 .𝑓 := 𝑒 {Γ [𝑥 ↦→ {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1,𝑖≠𝑗 , 𝑓 : 𝜏𝑒 }◦]}

FIELD ASSIGNMENT - OPEN NON EXIST

Γ ⊢ 𝑒 : 𝜏𝑒 Γ(𝑥) = {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1}◦
∀𝑖∈{1,...,𝑘 } 𝑓 ≠ 𝑓𝑖 Closed(𝜏𝑒 )

𝑔,Δ ⊢ {Γ} 𝑥 .𝑓 := 𝑒 {Γ [𝑥 ↦→ {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1, 𝑓 : 𝜏𝑒 }◦]}

COMMIT

Γ(𝑥) = {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1}◦

𝑔,Δ ⊢ {Γ} commit(𝑥) {Γ [𝑥 ↦→ {𝑓𝑖 : 𝜏𝑖 |𝑘𝑖=1}•]}

FUNCTION CALL
Γ ⊢ 𝑒𝑖 : 𝜏𝑖 |𝑛𝑖=1 Δ(𝑓 ) = (𝜏1, ..., 𝜏𝑛) ↦→ 𝜏 Closed(𝜏𝑖 ) |𝑛𝑖=1

𝑔,Δ ⊢ {Γ} 𝑥 := 𝑓 (𝑒 |𝑛𝑖=1) {Γ [𝑥 ↦→ 𝜏]}

RETURN
Δ(𝑔) = (𝜏1, ..., 𝜏𝑛) ↦→ 𝜏 Γ ⊢ 𝑒 : 𝜏

𝑔,Δ ⊢ {Γ} return(𝑒) {Γ}

Figure 3. Typing Rules for Statements: 𝑓 ,Δ ⊢ {Γ1} 𝑠 {Γ2}

mapping its formal parameters to their respective types. This
concept is formally defined below.

Γ = [𝑥1 ↦→ 𝜏1, ..., 𝑥𝑛 ↦→ 𝜏𝑛]
Δ(𝑓 ) = (𝜏1, ..., 𝜏𝑛) → 𝜏 𝑓 ,Δ ⊢ {Γ}𝑠{Γ′}

Δ ⊢ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 (𝑥1 : 𝜏1, ..., 𝑥𝑛 : 𝜏𝑛){𝑠}
A program 𝑝 is said to be typable under a global typing

context Δ, written Δ ⊢ 𝑝, if all functions in the range of the
program are typable with respect to Δ. The notation Δ𝑟 (𝑓 ) is
used to refer to the return type of 𝑓 .

3 Big-Step Soundness
In this section we prove the soundness of our type system
with respect to a big-step semantics of ECMA-SL. In order to
simplify the exposition, the semantics of ECMA-SL that we
first present does not model wrong executions and function
calls. We later extend it to cater for these two aspects.

3.1 ECMA-SL State Properties
ECMA-SL States An ECMA-SL state is composed of a
heap ℎ : 𝐿𝑜𝑐 × 𝑆𝑡𝑟 ⇀ V, mapping pairs of locations and
string to values, and a store 𝜌 : 𝑉𝑎𝑟 ⇀ V, mapping program
variables to values.

Following well-established approaches for modelling the
semantics of JavaScript [17, 28], instead of modelling a heap
as a function from locations to objects, objects are not explic-
itly represented in the formalism. At the semantic level, an
object can be seen as a region of the heap. More concretely,

the object pointed to by location 𝑙 corresponds to the set of
cells whose first element is 𝑙 . In the following, we write ℎ(𝑙)
to mean {(𝑙, 𝑓 ) | (𝑙, 𝑓 ) ∈ 𝑑𝑜𝑚(ℎ)} and 𝑑𝑜𝑚(ℎ(𝑙)) to mean
{𝑓 | (𝑙, 𝑓 ) ∈ 𝑑𝑜𝑚(ℎ)}.

3.1.1 State Satisfiability
Here we define what it means for an ECMA-SL state to
satisfy a given typing environment. To this end, we first extend
the notion of typing environment to heaps, introducing the
concept of heap typing environment and then give the formal
definition of state satisfiability.

Heap Typing Environment In order to define state satisfia-
bility we first introduce the concept of heap typing environ-
ment which maps each heap location to the type of the object
it refers to.

Definition 3 (Heap Typing Environment). A heap typing
environment is a partial function Σ : 𝐿𝑜𝑐 ⇀ T that maps
locations from the set of heap locations 𝐿𝑜𝑐 to the set of types
T.

In the following, we use Σ(𝑙, 𝑓 ) to refer to the type of the
field 𝑓 in the object pointed to by location 𝑙 . Put formally:
Σ(𝑙, 𝑓 ) = 𝜏𝑓 ⇐⇒ ∃ 𝜏 . Σ(𝑙) = 𝜏 ∧ 𝜏 = {..., 𝑓 : 𝜏𝑓 , ...}∗.

State Satisfiability We define the state satisfiability relation
with the help of three auxiliary satisfiability relations:

• Value Satisfiability: describing what it means for a value
𝑣 to satisfy a given type 𝜏 under a heap typing environ-
ment Σ – written 𝑣 ⊨Σ 𝜏 ;

• Store Satisfiability: describing what it means for a store
𝜌 to satisfy a given store typing environment Γ under a
heap typing environment Σ – written 𝜌 ⊨Σ Γ;

• Heap Satisfiability: describing what it means for a heap
to satisfy a heap typing enviroment – written ℎ ⊨ Σ.

Definition 4 (Value Satisfiability). A value 𝑣 is said to satisfy
a type 𝜏 with respect to a heap typing environment Σ, written
𝑣 ⊨Σ 𝜏 , if either:

• 𝑣 is a number and 𝜏 is the number type;
• 𝑣 is a string and 𝜏 is the string type;
• 𝑣 is 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒 and 𝜏 is the bool type;
• if 𝑣 is a location 𝑙 and Σ(𝑙) = 𝜏

Definition 5 (Store Satisfiability). Given a heap typing envi-
ronment Σ, a store 𝜌 is said to satisfy a store typing environ-
ment Γ, written 𝜌 ⊨Σ Γ), if and only if:

𝑑𝑜𝑚(𝜌) = 𝑑𝑜𝑚(Γ) ∧ ∀𝑥 ∈𝑑𝑜𝑚 (𝜌)𝜌 (𝑥) ⊨Σ Γ(𝑥)

Definition 6 (Heap Satisfiability). A heap ℎ is said to satisfy
a heap typing environment Σ, written ℎ ⊨ Σ, if and only if:

• 𝑑𝑜𝑚(ℎ) = 𝑑𝑜𝑚(Σ)
• ∀𝑙 ∈𝑑𝑜𝑚 (ℎ)𝑑𝑜𝑚(ℎ(𝑙)) = 𝑑𝑜𝑚(Σ(𝑙))
• ∀𝑙 ∈𝑑𝑜𝑚 (ℎ)∀𝑓 ∈𝑑𝑜𝑚 (ℎ (𝑙))ℎ(𝑙, 𝑓 ) ⊨Σ Σ(𝑙, 𝑓 )

To avoid clutter, we use the notation ℎ, 𝜌 ⊨ Σ, Γ to mean
that ℎ ⊨ Σ and 𝜌 ⊨Σ Γ.
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VARIABLE

J𝑥K𝜌 ≜ 𝜌 (𝑥)
VALUE

J𝑣K𝜌 ≜ 𝑣

UNARY OPERATION

J⊕(𝑒)K𝜌 ≜ ⊕(J𝑒K𝜌 )

BINARY OPERATION

J⊗(𝑒1, 𝑒2)K𝜌 ≜ ⊗(J𝑒1K𝜌 , J𝑒2K𝜌 )

Figure 4. Big-step semantics for expressions J𝑒K𝜌 ≜ 𝑣

3.1.2 No-aliasing Invariant
As stated before, in order to deal with aliasing and muta-
tion, our type system enforces a simple invariant: only closed
objects can be referenced by more than one pointer. We for-
malise this invariant as the state property given in the defini-
tion below.

Definition 7 (No Aliasing for Open Objects). A heap ℎ, a
store 𝜌 and a heap typing environment Σ are said to satisfy
the no aliasing for open objects (NAOO) property, written
𝑁𝐴𝑂𝑂 (ℎ, 𝜌, Σ), if and only if:

• ∀𝑙 ∈𝑑𝑜𝑚 (Σ) ⌊Σ(𝑙)⌋ = ◦ ⇒ ¬∃(𝑙 ′,𝑓 ) : ℎ(𝑙 ′, 𝑓 ) = 𝑙

𝑁𝐴𝑂𝑂1
• ∀𝑙 ∈𝑑𝑜𝑚 (Σ) ⌊Σ(𝑙)⌋ = ◦ ⇒ ¬∃𝑥1,𝑥2 𝑥1 ≠ 𝑥2 ∧ 𝜌 (𝑥1) =

𝜌 (𝑥2) = 𝑙 𝑁𝐴𝑂𝑂2

Essentially the no aliasing for open objects (NAOO) prop-
erty states that an open object can only be referenced by a
single program variable; this means that: (1) it cannot be ref-
erenced by an object field (𝑁𝐴𝑂𝑂1) and (2) it cannot be refer-
enced by two distinct program variables 𝑥1 and 𝑥2 (𝑁𝐴𝑂𝑂2).

Essentially, our type system enforces that objects can only
be mutated if they are open, meaning that there is a single
reference pointing to them. This guarantees that object mu-
tation does not cause the type of a given reference (variable
or object field) to become inconsistent with the type of its
corresponding value.

3.2 Big-Step Semantics
Our semantics for statements makes use of a simple big-step
semantics for ECMA-SL expressions given in the figure be-
low, where we use the notation J𝑒K𝜌 to mean the evaluation of
the expression 𝑒 in the store 𝜌 . Note that, given that ECMA-SL
expressions do not interact with the object heap, the semantics
of expressions only depends on the variable store.

We are now at the position to define our semantic judge-
ment for statements. The semantic judgement have the form
⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 ′⟩, meaning that the evaluation of the
statement 𝑠 in the heap ℎ and store 𝜌 results in the heap ℎ′

and store 𝜌 ′. In order to reason about the types of the objects
in the heap, we have to instrument the semantics to keep track
of the types of the objects created at runtime. To this end,
the semantic judgement for statements additionally include
the initial and final heap typing environments, respectively
Σ and Σ′. Some examples of the semantic rules are given in
Figure 5.

FIELD ASSIGNMENT - OPEN
J𝑒K𝜌 = 𝑣 J𝑥K𝜌 = 𝑙 𝜏 = 𝑇𝑦𝑝𝑒Σ (𝑣) ⌊Σ(𝑙)⌋ = ◦

Σ′ = Σ[𝑙 ↦→ Σ(𝑙) [𝑓 ↦→ 𝜏]] ClosedΣ (𝑣)
⟨Σ, ℎ, 𝜌, 𝑥 .𝑓 := 𝑒⟩ ⇓𝑖 ⟨Σ′, ℎ[(𝑙, 𝑓 ) ↦→ 𝑣], 𝜌⟩

FIELD ASSIGNMENT - CLOSE
J𝑒K𝜌 = 𝑣 J𝑥K𝜌 = 𝑙 Σ(𝑙, 𝑓 ) = 𝑇𝑦𝑝𝑒Σ (𝑣)
⌊Σ(𝑙)⌋ = • (𝑙, 𝑓 ) ∈ 𝑑𝑜𝑚(ℎ) ClosedΣ (𝑣)

⟨Σ, ℎ, 𝜌, 𝑥 .𝑓 := 𝑒⟩ ⇓𝑖 ⟨Σ, ℎ[(𝑙, 𝑓 ) ↦→ 𝑣], 𝜌⟩

COMMIT
J𝑥K𝜌 = 𝑙 ⌊Σ(𝑙)⌋ = ◦

⟨Σ, ℎ, 𝜌, commit(𝑥)⟩ ⇓𝑖 ⟨Σ[𝑙 ↦→ Σ(𝑙)•], ℎ, 𝜌⟩

Figure 5. Big-step semantics for statements: ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖
⟨Σ′, ℎ′, 𝜌 ′⟩

The proposed semantics enforces the no aliasing for open
objects (NAOO) invariant. To this end, before every assign-
ment, the semantics checks if the value being assigned is
either a primitive value or a closed object; only in such cases
is the assignment allowed to go through. To avoid clutter, we
introduce the predicate ClosedΣ (𝑣) to mean that 𝑣 is either a
primitive value or a closed object.

Definition 8 (Closed Values). Let Σ be a heap typing envi-
ronment, a value 𝑣 is said to be of a closed with respect to Σ,
written ClosedΣ (𝑣), if and only if it is of a primitive type or if
⌊Σ(𝑣)⌋ = •.

3.3 Well-Typed Expressions - Safety
Our type system for statements relies on a simple type system
for expressions. Unsurprisingly, in order to establish the safety
of the type system for statements, we first have to establish
the safety of our type system for expressions.

Lemma 1 (Well-typed Expressions - Safety). Let 𝑒 be an
expression, 𝜏𝑒 a type, 𝜌 a store, Σ a heap typing environment
and Γ store typing environment. Suppose that Γ ⊢ 𝑒 : 𝜏𝑒 ,
𝜌 ⊨Σ Γ and J𝑒K𝜌 = 𝑣 . Then 𝑣 ⊨Σ 𝜏𝑒 .

3.4 Soundness - Type Safety
Theorem 1 states that the proposed type system satisfies the
Type Safety property.

Theorem 1 (Soundness - Type Safety). Let 𝑔 be a function
and Δ a typing context. Let ℎ be a heap, 𝜌 a store and 𝑠

a statement. Suppose that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ′}, ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖
⟨Σ′, ℎ′, 𝜌 ′⟩ and ℎ, 𝜌 ⊨ Σ, Γ. Then ℎ′, 𝜌 ′ ⊨ Σ′, Γ′.

3.5 Soundness - Fault Avoidance
In this subsection, we extend our operational semantics to
take into account erroneous executions and prove the standard
fault avoidance property of sound type systems: well-typed
programs cannot go wrong. To this end, we extend the opera-
tional semantics defined in Subsection 3.2 with explicit error
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OPEN RHS - LOOKUP
J𝑒K𝜌 = 𝑙 ℎ(𝑙, 𝑓 ) = 𝑣 ¬ClosedΣ (𝑣)

⟨Σ, ℎ, 𝜌, 𝑥 := 𝑒.𝑓 ⟩ ⇓𝑖 E

CLOSED OBJECT - ILLEGAL DELETION
J𝑥K𝜌 = 𝑙 ⌊𝑆𝑖𝑔𝑚𝑎(𝑙)⌋ = •
⟨Σ, ℎ, 𝜌, delete(𝑥 .𝑓 )⟩ ⇓𝑖 E

IF - ILLEGAL GUARD
J𝑒K𝜌 = 𝑣 𝑇𝑦𝑝𝑒Σ (𝑣) ≠ 𝑏𝑜𝑜𝑙

⟨Σ, ℎ, 𝜌, if (𝑒){𝑠1} else {𝑠2}⟩ ⇓𝑖 E

Figure 6. Big-Step semantics for statements - erroneous exe-
cutions: ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 E

derivations, writing: ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 E to mean that evaluation
of the statement 𝑠 in the heap ℎ, store 𝜌, and heap typing
environment Σ leads to an execution error. One can leverage
these error derivations to formally define fault avoidance. Es-
sentially, if a statement 𝑠 is typable with respect to a given
function 𝑔, typing context Δ and store typing environments Γ
and Γ′, i.e. 𝑔,Δ ⊢ {Γ} 𝑠 {Γ′}, and if one executes 𝑠 in a state
(ℎ, 𝜌) such that ℎ, 𝜌 ⊨ Σ, Γ, for a given heap typing environ-
ment Σ, then the execution of 𝑠 will not result in a runtime
error; put formally:

(𝑔,Δ ⊢ {Γ} 𝑠 {Γ′} ∧ ℎ, 𝜌 ⊨ Σ, Γ) ⇒ ⟨Σ, ℎ, 𝜌, 𝑠⟩ ̸⇓𝑖 E (1)

3.5.1 Error Executions
Figure 6 provides an overview of the extended operational
semantics given in Subsection 3.2 with a set of explicit error
derivations. These derivations model the runtime errors that
can occur during the execution of an ECMA-SL statement.
We consider the following five types of runtime errors: (1)
branching on a value that is not of boolean type; (2) creating
a second reference to an open object, thereby violating the
NAOO invariant; (3) updating a field of a closed object to a
value of a different type; (4) adding a new field to a closed
object; and (5) deleting a field from a closed object.

3.5.2 Soundness - Fault Avoidance
Theorem 2 states that the proposed type system satisfies the
Fault Avoidance property.

Theorem 2 (Soundness - Fault Avoidance). Let 𝑔 be a func-
tion and Δ a Typing Context. Let ℎ be a heap, 𝜌 a store and
s a statement. Suppose that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ′} and ℎ, 𝜌 ⊨ Σ, Γ
then it is not the case that ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 E.

3.6 Function and Return
In this subsection, we extend the operational semantics intro-
duced in Subsection 3.2 with support for function calls and
return statements. To this end, we have to change the format
of the semantic judgment so that it additionally produces an
outcome, which captures the flow of execution. Modified se-
mantic judgements have the form: ⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑜⟩

SEQUENCING-3
⟨Σ, ℎ, 𝜌, 𝑠1⟩ ⇓𝑖 ⟨Σ1, ℎ1, 𝜌1,𝐶𝑜𝑛𝑡⟩
⟨Σ1, ℎ1, 𝜌1, 𝑠2⟩ ⇓𝑖 ⟨Σ2, ℎ2, 𝜌2, 𝑜⟩
⟨Σ, ℎ, 𝜌, 𝑠1; 𝑠2⟩ ⇓𝑖 ⟨Σ2, ℎ2, 𝜌2, 𝑜⟩

RETURN
J𝑒K𝜌 = 𝑣

⟨Σ, ℎ, 𝜌, return(𝑒)⟩ ⇓𝑖 ⟨Σ, ℎ, 𝜌, 𝑅𝑒𝑡 (𝑣)⟩

FUNCTION CALL
J𝑒𝑖K𝜌 = 𝑣𝑖 |𝑛𝑖=1 body(𝑓 ) = 𝑠 params(𝑓 ) = 𝑥𝑖 |𝑛𝑖=1

⟨Σ, ℎ, [𝑥𝑖 ↦→ 𝑣𝑖 |𝑛𝑖=1], 𝑠⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑅𝑒𝑡 (𝑣)⟩
ClosedΣ (𝑣𝑖 )𝑛𝑖=1

⟨Σ, ℎ, 𝜌, 𝑥 := 𝑓 (𝑒1, ..., 𝑒𝑛)⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 [𝑥 ↦→ 𝑣],𝐶𝑜𝑛𝑡⟩

Figure 7. Big-Step semantics for statements - function call:
⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑜⟩

signifying that the evaluation of the statement 𝑠 in the heap
ℎ, store 𝜌 , and heap typing environment Σ results in the heap
ℎ′, store 𝜌 ′, heap typing environment Σ′, and outcome 𝑜 . Out-
comes are given by the following grammar:

𝑜 ::= 𝐶𝑜𝑛𝑡 | 𝐸𝑟𝑟 | 𝑅𝑒𝑡 (𝑣) (2)

We consider three types of outcomes: (1) the continuation
outcome 𝐶𝑜𝑛𝑡 , signifying that the execution may proceed
with the next statement; (2) the error outcome 𝐸𝑟𝑟 , signifying
that the execution generated an error and must therefore be
terminated; and (3) the return outcome 𝑅𝑒𝑡 (𝑣), signifying that
the code of the function that is currently executing returned
the value 𝑣 .

Figure 7 gives a selection of the extended semantic rules.

Soundness of the Complete Type System The soundness
of the complete can now be established, meaning that the
type system satisfies the Type Safety and Fault Avoidance
properties with respect to the extended operational semantics.

4 Small-Step Soundness
In this sectionwe prove the soundness of our type system with
respect to a small-step semantics of ECMA-SL. In order to
simplify the exposition, and as in the previous section, the
semantics of ECMA-SL that we first present does not model
function calls.

4.1 Small-Step Semantics
In this subsection we define a small-step semantics for ECMA-
SL statements, ignoring for now function calls. Once again,
we rely on the semantics for expressions presented in Figure 4,
using the notation J𝑒K𝜌 = 𝑣 to mean that the evaluation of the
expression 𝑒 in the store 𝜌 results in the value 𝑣 .

The small-step semantics judgements for statements are
of the form ⟨Σ, ℎ, 𝜌, 𝑠⟩ →𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑠 ′⟩, meaning that the
evaluation of the statement 𝑠 in the heap ℎ and store 𝜌 leads
to a statement 𝑠 ′ in the heap ℎ′ and store 𝜌 ′. Similarly to our
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FIELD ASSIGNMENT OPEN
J𝑒K𝜌 = 𝑣 J𝑥K𝜌 = 𝑙 𝜏 = 𝑇𝑦𝑝𝑒Σ (𝑣) ⌊Σ(𝑙)⌋ = ◦

Σ′ = Σ[𝑙 ↦→ Σ(𝑙) [𝑓 ↦→ 𝜏]] ClosedΣ (𝑣)
⟨Σ, ℎ, 𝜌, 𝑥 .𝑓 := 𝑒⟩ →𝑖 ⟨Σ′, ℎ[(𝑙, 𝑓 ) ↦→ 𝑣], 𝜌, skip⟩

FIELD ASSIGNMENT CLOSE
J𝑒K𝜌 = 𝑣 J𝑥K𝜌 = 𝑙 Σ(𝑙, 𝑓 ) = 𝑇𝑦𝑝𝑒Σ (𝑣) ⌊Σ(𝑙)⌋ = •

(𝑙, 𝑓 ) ∈ 𝑑𝑜𝑚(ℎ) ClosedΣ (𝑣)
⟨Σ, ℎ, 𝜌, 𝑥 .𝑓 := 𝑒⟩ →𝑖 ⟨Σ, ℎ[(𝑙, 𝑓 ) ↦→ 𝑣], 𝜌, skip⟩

SEQUENCING COMPOSITION

⟨Σ, ℎ, 𝜌, 𝑠1⟩ →𝑖 ⟨Σ2, ℎ2, 𝜌2, 𝑠
′
1⟩

⟨Σ, ℎ, 𝜌, 𝑠1; 𝑠2⟩ →𝑖 ⟨Σ2, ℎ2, 𝜌2, 𝑠
′
1; 𝑠2⟩

Figure 8. Small-Step semantics for statements: ⟨Σ, ℎ, 𝜌, 𝑠⟩ →𝑖

⟨Σ′, ℎ′, 𝜌 ′, 𝑠⟩

big-step semantics, and in order to reason about the types of
the objects in the heap, we have to instrument the semantics
to keep track of the types of the objects created at runtime.
To this end, the semantic judgement for statements addition-
ally include the initial and final heap typing environments,
respectively Σ and Σ′.

Our small-step semantics is equivalent to the big-step se-
mantics provided in the previous chapter. Put formally, for
every heap typing environments Σ and Σ′, heaps ℎ and ℎ′,
stores 𝜌 and 𝜌 ′, and statement 𝑠, it holds that:

⟨Σ, ℎ, 𝜌, 𝑠⟩ ⇓𝑖 ⟨Σ′, ℎ′, 𝜌 ′⟩ ⇐⇒ ⟨Σ, ℎ, 𝜌, 𝑠⟩ →∗
𝑖 ⟨Σ′, ℎ′, 𝜌 ′, skip⟩

(3)
where: we use →∗

𝑖 to denote the reflexive-transitive closure
of →𝑖 . From the equivalence result, it follows that the small-
step semantics also enforces the no aliasing for open objects
(NAOO) invariant. The semantic rules are given in Figure 8

Unsurprisingly, the small-step rules are analogous to the
big-step rules given in the previous chapter. In fact, the set
of rules that lead to a skip statement almost exactly coincide
with the corresponding big-step rules. The major differences
appear in the rules associated with compound statements: if,
while, and sequence. For these statements, the correspond-
ing small-step rules perform a single computation step, gen-
erating the statement to be executed next, while the big-step
rules capture their complete evaluation.

4.2 Soundness - Preservation
Theorem 3 states that the proposed type system satisfies the
Preservation property.

Theorem 3 (Preservation). Let 𝑔 be a function and Δ a Typ-
ing Context. Let Σ and Σ′ heap typing environments, Γ, Γ′

and Γ𝑓 store typing environments, ℎ and ℎ′ heaps, 𝜌 and 𝜌 ′

stores and 𝑠 and 𝑠 ′ statements. Suppose that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ𝑓 },
⟨Σ, ℎ, 𝜌, 𝑠⟩ →𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑠 ′⟩ and ℎ, 𝜌 ⊨ Σ, Γ. Then ∃Γ′ :
ℎ′, 𝜌 ′ ⊨ Σ′, Γ′ ∧ 𝑔,Δ ⊢ {Γ′} 𝑠 ′ {Γ𝑓 }

4.3 Soundness - Progress
In this subsection we prove that the proposed type system
satisfies the progress property with respect to the small-step
operational semantics defined in Subsection 4.1.

In order to establish the progress property of our type sys-
tem, we make use of a new auxiliary property named progress
of expression typing.

Lemma 2 (Well-typed Expressions - Progress). Let 𝑒 be an
expression, 𝜏𝑒 a type, 𝜌 a store, Σ a heap typing environment
and Γ store typing environments. Suppose that Γ ⊢ 𝑒 : 𝜏𝑒 and
𝜌 ⊨Σ Γ. Then ∃𝑣 : J𝑒K𝜌 = 𝑣 .

Theorem 4 states that the proposed type system satisfies
the Progress property.

Theorem 4 (Progress). Let 𝑔 be a function and Δ a typing
context. Let ℎ be a heap, 𝜌 a store, and s a statement. Suppose
that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ𝑓 } and ℎ, 𝜌 ⊨ Σ, Γ. Then either 𝑠 = skip or
∃Σ′, ℎ′, 𝜌 ′, 𝑠 ′ : ⟨Σ, ℎ, 𝜌, 𝑠⟩ →𝑖 ⟨Σ′, ℎ′, 𝜌 ′, 𝑠 ′⟩.

4.4 Function and Return
In this subsection, we adapt our small-step semantics and
soundness proofs to account for function calls and return
statements.

4.4.1 Semantics
In order to extend our small-step semantics to take into ac-
count function calls, we rely on the notion of call stack [16].
Call stacks are used to keep track of the execution context of
the calling function. Hence, when evaluating a function call,
we extend the current call stack with a record that book-keeps
the calling context. Conversely, when evaluating a return state-
ment, the semantics discards the current execution context
and recovers the execution context of the calling function (i.e.
the function that receives the returned value) from the call
stack. Formally, call stacks are generated by the following
grammar:

𝑐𝑠 ::= [ ] | (𝑓 , 𝑥, 𝜌, 𝑠) :: 𝑐𝑠 (4)
Where :: denotes list concatenation and [ ] the empty list. Es-
sentially, a call stack is a list of 4-tuples of the form (𝑓 , 𝑥, 𝜌, 𝑠),
referred to as call stack records, where: (1) 𝑓 is the identifier
of the calling function; (2) 𝑥 is the program variable of the
calling function to which the result of the current function is
to be assigned; (3) 𝜌 is the store of the calling function; and
(4) 𝑠 is the continuation of the calling function; that is: the
part of the body of the calling function that still remains to be
executed once the current function returns.

Given a call stack 𝑐𝑠, we use the notation 𝑠𝑡𝑜𝑟𝑒𝑠 (𝑐𝑠) to
refer to the corresponding list of stores; the function 𝑠𝑡𝑜𝑟𝑒𝑠 is
inductively defined as follows:

𝑠𝑡𝑜𝑟𝑒𝑠 (𝑐𝑠) =
{

[ ] if 𝑐𝑠 = [ ]
𝜌 :: 𝑠𝑡𝑜𝑟𝑒𝑠 (𝑐𝑠 ′) if 𝑐𝑠 = (−,−, 𝜌,−) :: 𝑐𝑠 ′

(5)
We are now at the position to extend our semantic judge-

ment for statements introduced in Subsection 4.1 with sup-
port for function calls and return statements. To this end,
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FUNCTION CALL
J𝑒𝑖K𝜌 = 𝑣𝑖 |𝑛𝑖=1 ClosedΣ (𝑣𝑖 ) |𝑛𝑖=1 body(𝑓 ) = 𝑠 ′

params(𝑓 ) = 𝑥𝑖 |𝑛𝑖=1 𝑐𝑠 ′ = (𝑔, 𝑥, 𝜌, 𝑠) :: 𝑐𝑠
⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, 𝑥 := 𝑓 (𝑒1, ..., 𝑒𝑛); 𝑠⟩ →𝑖 ⟨𝑓 , Σ, ℎ, [𝑥𝑖 ↦→ 𝑣𝑖 |𝑛𝑖=1], 𝑐𝑠 ′, 𝑠 ′⟩

RETURN
J𝑒K𝜌 = 𝑣 𝑐𝑠 = (𝑓 , 𝑥, 𝜌 ′, 𝑠 ′) :: 𝑐𝑠 ′

⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, return(𝑒); 𝑠⟩ →𝑖 ⟨𝑓 , Σ, ℎ, 𝜌 ′[𝑥 ↦→ 𝑣], 𝑐𝑠 ′, 𝑠 ′⟩

TOP LEVEL RETURN
J𝑒K𝜌 = 𝑣 𝑐𝑠 = []

⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, return(𝑒); 𝑠⟩ →𝑖 ⟨𝑔, Σ, ℎ, 𝜌 [𝑜𝑢𝑡 ↦→ 𝑣], 𝑐𝑠, skip⟩

Figure 9. Small-Step semantics for statements - function call:
⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, 𝑠⟩ →𝑖 ⟨𝑔′, Σ′, ℎ′, 𝜌 ′, 𝑐𝑠 ′, 𝑠 ′⟩

we have to change the format of the semantic judgment to
⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, 𝑠⟩ →𝑖 ⟨𝑔′, Σ′, ℎ′, 𝜌 ′, 𝑐𝑠 ′, 𝑠 ′⟩, with 𝑔 and 𝑐𝑠 rep-
resenting the current function identifier and call stack, and
𝑔′ and 𝑐𝑠 ′ representing the resulting function identifier and
call stack.

Figure 9 gives a selection of the extended semantic rules.

4.4.2 Semantic Properties
Just as for the heap and store, we introduce here the notion of
call stack satisfiability for a call stack 𝑐𝑠 = (𝑓 , 𝑥, 𝜌, 𝑠).
Definition 9 (Call Stack Satisfiability). Given a heap typing
environment Σ, a typing context Δ and a function 𝑔, a call
stack 𝑐𝑠 is said to satisfy 𝑔,Δ, Σ, written 𝑐𝑠 ⊨ 𝑔,Δ, Σ, if:

• 𝑐𝑠 = [] or
• 𝑐𝑠 = (𝑓 , 𝑥, 𝜌, 𝑠) :: 𝑐𝑠 ′ such that:

– ∃Γ,Γ′∀𝑣 𝑣 ⊨Σ Δ𝑟 (𝑔) ⇒ 𝜌 [𝑥 ↦→ 𝑣] ⊨Σ Γ∧ 𝑓 ,Δ ⊢ {Γ} 𝑠 {Γ′}
– 𝑐𝑠 ′ ⊨ 𝑓 ,Δ, Σ

Where Δ𝑟 (𝑔) denotes the return type of 𝑔.

Essentially, the call stack satisfiability property guarantees
that all the continuations in the current call stack are typable
and that all stores in the current call satisfy the corresponding
store typing environment if the extended with a value of the
appropriate type.

No Aliasing for Call Stack (NACS) In order to deal with
aliasing and mutation, our type system enforces the NAOO
property, meaning that only closed objects can be referenced
by more than one pointer. With the addition of the call stack,
we have to extend this invariant to take into account the stores
that form the call stack. To this end, we introduce the notion
of no aliasing for call stack (NACS).

Definition 10 (No Aliasing for Call Stack). Let 𝑐𝑠 be a call
stack, 𝜌𝑛 a store, and Σ a heap typing environment; 𝑐𝑠 and
𝜌𝑛 satisfy the no aliasing property with respect to Σ, written
𝑁𝐴𝐶𝑆 (Σ, 𝜌𝑛, 𝑐𝑠), if:

• stores(𝑐𝑠) = [𝜌0, ..., 𝜌𝑛−1]
• ∀𝑙 ∈𝐿𝑜𝑐𝑠 ∀𝑥,𝑦∈𝑉𝑎𝑟𝑠 ∀𝑖, 𝑗 𝜌𝑖 (𝑥) = 𝜌 𝑗 (𝑦) = 𝑙 ∧ 𝑖 ≠ 𝑗 ⇒
⌊Σ(𝑙)⌋ = •

Essentially, the NACS property means that only closed
objects may be referenced by variables pertaining to different
stores. In other words, if two variables 𝑥 and 𝑦 in different
stores 𝜌𝑖 and 𝜌 𝑗 reference the same location 𝑙 , then the object
pointed to by 𝑙 must be closed. The proposed type system en-
forces the NACS invariant. However, such as with the NAOO
property, we do not prove that the type system does enforce
the NACS invariant directly. Instead, we instrumented the
operational semantics so that it also enforces the NACS in-
variant and will later prove that typable programs cannot be
rejected by the semantics for violating the NACS invariant.

4.4.3 Soundness
We now prove that our full type system satisfies the Progress
and Preservation [30] properties with respect to the extended
operational semantics.

Soundness - Preservation With the introduction of the call
stack we have to consider an updated version of our Preser-
vation theorem. Analogously to the type safety theorem for
our big-step semantics presented in Subsection 3.6, with the
introduction of function calls, we now also require that the
global typing context Δ types the program 𝑝 as hypothesis.

Theorem 5 (Soundness - Preservation). Let 𝑝 be a program
containing functions 𝑔 and 𝑓 , Δ a typing context, Σ and Σ′

heap typing environments, Γ and Γ′ store typing environments.
Let ℎ and ℎ′ be heaps, 𝜌 and 𝜌 ′ stores and s and s’ state-
ments. Suppose that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ′}, ⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, 𝑠⟩ →𝑖

⟨𝑓 , Σ′, ℎ′, 𝜌 ′, 𝑐𝑠 ′, 𝑠 ′⟩, ℎ, 𝜌 ⊨ Σ, Γ, 𝑐𝑠 ⊨ 𝑔,Δ, Σ and Δ ⊢ 𝑝. Then
there exist two typing environments Γ̂ and Γ̂′ such that the
following are true: ℎ′, 𝜌 ′ ⊨ Σ′, Γ̂; 𝑓 ,Δ ⊢ {Γ̂} 𝑠 ′ {Γ̂′}; and
𝑐𝑠 ′ ⊨ 𝑓 ,Δ, Σ′.

Soundness - Progress We finish our small-step semantics
section by extending the Progress theorem to the updated
transition rules. As in Theorem 5, some hypothesis have to
be added. We now require that the global typing context Δ
types the program 𝑝 and that the existing call stack satisfies
the current function 𝑔, Δ, and the heap typing environment Σ′.
Formally:

Theorem 6 (Progress). Let 𝑔 be a function and Δ a typ-
ing context. Let ℎ be a heap, 𝜌 a store, and s a statement.
Suppose that 𝑔,Δ ⊢ {Γ} 𝑠 {Γ𝑓 }, ℎ, 𝜌 ⊨ Σ, Γ, 𝑐𝑠 ⊨ 𝑔,Δ, Σ
and Δ ⊢ 𝑝. Then either 𝑠 = skip or ∃𝑓 , Σ′, ℎ′, 𝜌 ′, 𝑐𝑠 ′, 𝑠 ′ :
⟨𝑔, Σ, ℎ, 𝜌, 𝑐𝑠, 𝑠⟩ →𝑖 ⟨𝑓 , Σ′, ℎ′, 𝜌 ′, 𝑐𝑠 ′, 𝑠 ′⟩.

5 Related Work
The research literature covers a wide variety of program anal-
ysis techniques for JavaScript, such as: type systems [11, 21],
abstract interpreters [14], points-to analyses [19], program
logics [18, 28], operational semantics [9, 24, 25], just to men-
tion a few. We focus our analysis of the related work on type
systems for JavaScript-like languages.

Thiemann [29] was the first to propose a type system for
a subset of JavaScript. While this type system considered
some of the dynamic aspects of JavaScript, such as exten-
sible objects, dynamic function calls, and type coercions, it
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also ignored various important aspects of the language, most
notably JavaScript’s prototype-based inheritance mechanism.
Importantly, the type system proposed by Thiemann is flow-
insensitive, meaning that variables and object fields are not
allowed to change type over time. To overcome this issue,
Anderson et al. [7] later proposed a type system that allows
JavaScript objects to evolve in a controlled manner. The key
idea behind this work is to classify object fields as potential
or definite; potential fields can have their types change while
definite fields cannot. The idea of potential/definite fields is
reminiscent of our open/closed objects. These two strategies
have, however, different trade-offs with both being able to
typecheck legal programs that are rejected by the other.

Later, Jensen et al. [20] proposed the first sound type analy-
sis for real JavaScript code, called TAJS. The proposed analy-
sis is flow-sensitive, allowing the types of variables and object
fields to change over time, and based on abstract interpreta-
tion [13]. The main contribution of this analysis is the design
of a complex lattice to reason about unary and binary oper-
ations in JavaScript, which takes into account JavaScript’s
implicit type coercions.

The TypeScript programming language [8] was designed
with the goal of adding optional types to JavaScript, taking
opportunity of JavaScript’s flexibility, while at the same time
providing some of the advantages of statically typed lan-
guages, such as informative compiling errors and automatic
code completion. Client-side JavaScript programs make ex-
tensive use of external APIs that are not available for static
typing, thus the analysis of TypeScript programs requires
the specification of interface declarations for the external
libraries that a program may use. However, interface declara-
tions are humanly written and not necessarily by the authors
of the libraries, therefore leaving room for errors that can
compromise the soundness of the typing process. To solve
this program, Feldthaus et al. [15] proposed a method for
checking the correction of TypeScript declaration files with
respect to JavaScript library implementations.

More recently, some type systems were developed with the
objective of enabling efficient ahead-of-time compilation for
JavaScript. The first purposed work with this objective was
from Choit et al. [12] which supports prototype-based inher-
itance, structural subtyping, and method updates. Later on,
Chandra et al. [10] expanded on this work and incorporated
additional annotations, thus enabling the type system to better
differentiate between readable and writable object fields.

6 Conclusions
The ECMA-SL project was created with the goal of assisting
with the analysis of JavaScript programs by first compiling
the programs to be analysed to the ECMA-SL language. To
this end, the ECMA-SL project includes a compilation tool
chain from JavaScript to ECMA-SL, which has at its core a
reference interpreter of the 5th version of the ECMAScript
standard called ECMARef5. As the ECMAScript standard is
now at its 12th version, in order for the ECMA-SL project to
be relevant for the analysis of current JavaScript programs,

its compilation pipeline must be adapted to the more recent
versions of the ECMAScript standard. To achieve this, one
must first adapt the ECMARef5 interpreter that sits at its core.
However, such extension is rendered extremely difficult due
to the fact that ECMA-SL is an untyped language.

This thesis contributes to the overall ECMA-SL project
by designing Typed ECMA-SL, a typed version of ECMA-
SL, together with a sound type system for checking Typed
ECMA-SL programs. We believe that the implementation of
the proposed system would make ECMA-SL substantially
easier to use by statically detecting a variety of programming
errors that would be, otherwise, only detected dynamically
via testing.

In summary, the contributions of this thesis are the follow-
ing:

Typed ECMA-SL The first contribution of this thesis is the
design of Typed ECMA-SL, a typed extension of ECMA-
SL [23]. Whilst doing this extension we aimed to minimize
the number of extra annotations required, thus enabling al-
ready proficient developers in ECMA-SL to easily transition
to Typed ECMA-SL.

Type System The second contribution of this thesis is the
design of a type system for checking Typed ECMA-SL pro-
grams. The purposed type system is both flow-sensitive and
sound. Flow-sensitivity allows for program variables and ob-
jects to change their types during execution. Soundness en-
sures that well-typed programs cannot go wrong. Soundness
is particularly difficult to achieve in the setting of ECMA-
SL due to the dynamicity of the language, which includes
extensible objects and the dynamic deletion of object fields.

Soundness Proofs The third contribution of this thesis is
the development of two soundness proofs for the proposed
type system: one based on a big-step operational semantics
and another one based on a small-step operational semantics.
The two proofs enabled us to better understand the trade-offs
between both types of semantics when proving the soundness
of a type system. On the one hand, the small-step operational
semantics is more involved than its big-step version, requir-
ing the definition of call stacks and an additional invariant
for constraining the ways in which call stacks can be ma-
nipulated. On the other hand, the big-step semantics has to
model erroneous cases explicitly as they cannot be otherwise
differentiated from non-terminating derivations.

6.1 Future Work
Implementing the type system The clear next step is to
implement the proposed type system. With the implementa-
tion of the proposed type system, the ECMARef interpreter
can then be extended and adapted to newer versions of the
JavaScript standard.

Enabling Closed Objects to Become Open When a closed
object is assigned to one and only one variable, changing its
type has a local impact, therefore it might as well be treated
as an open object. Thus, by introducing a more fine-grained
control mechanism over object aliasing, we could potentially
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re-open an object after it being closed. For instance, we envis-
age the introduction of an uncommit command for opening
an object after closing it. This would require further instru-
menting the syntax of types to book-keep the pointers to
values of a specific type.

Extending the type system In the near future we would
like to extend ECMA-SL with support for recursive types,
union types and subtyping, as these features would be useful
for the development of a typed version of the ECMARef
interpreter. For instance, recursive types are essential to model
object types with a recursive structure, such as abstract syntax
trees.
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